Fundamental Conditions for Low-CP-Rank Tensor Completion

نویسندگان

  • Morteza Ashraphijuo
  • Xiaodong Wang
چکیده

We consider the problem of low canonical polyadic (CP) rank tensor completion. A completion is a tensor whose entries agree with the observed entries and its rank matches the given CP rank. We analyze the manifold structure corresponding to the tensors with the given rank and define a set of polynomials based on the sampling pattern and CP decomposition. Then, we show that finite completability of the sampled tensor is equivalent to having a certain number of algebraically independent polynomials among the defined polynomials. Our proposed approach results in characterizing the maximum number of algebraically independent polynomials in terms of a simple geometric structure of the sampling pattern, and therefore we obtain the deterministic necessary and sufficient condition on the sampling pattern for finite completability of the sampled tensor. Moreover, assuming that the entries of the tensor are sampled independently with probability p and using the mentioned deterministic analysis, we propose a combinatorial method to derive a lower bound on the sampling probability p, or equivalently, the number of sampled entries that guarantees finite completability with high probability. We also show that the existing result for the matrix completion problem can be used to obtain a loose lower bound on the sampling probability p. In addition, we obtain deterministic and probabilistic conditions for unique completability. It is seen that the number of samples required for finite or unique completability obtained by the proposed analysis on the CP manifold is orders-of-magnitude lower than that is obtained by the existing analysis on the Grassmannian manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank Determination for Low-Rank Data Completion

Recently, fundamental conditions on the sampling patterns have been obtained for finite completability of low-rank matrices or tensors given the corresponding ranks. In this paper, we consider the scenario where the rank is not given and we aim to approximate the unknown rank based on the location of sampled entries and some given completion. We consider a number of data models, including singl...

متن کامل

New Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization

In this paper, we propose three new tensor decompositions for even-order tensors corresponding respectively to the rank-one decompositions of some unfolded matrices. Consequently such new decompositions lead to three new notions of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank in this paper. We discuss the bounds between these new te...

متن کامل

Deterministic and Probabilistic Conditions for Finite Completability of Low Rank Tensor

We investigate the fundamental conditions on the sampling pattern, i.e., locations of the sampled entries, for finite completability of a low-rank tensor given some components of its Tucker rank. In order to find the deterministic necessary and sufficient conditions, we propose an algebraic geometric analysis on the Tucker manifold, which allows us to incorporate multiple rank components in the...

متن کامل

Factor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion

Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...

متن کامل

Factor Matrix Trace Norm Minimization for Low-Rank Tensor Completion

Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix trace norm minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017